Quantum many-body systems

Miscibility-immiscibility transition of strongly interacting bosonic mixtures in optical lattices

Interaction plays key role in the mixing properties of a multi-component system. The miscibility-immiscibility transition (MIT) in a weakly interacting mixture of Bose gases is predominantly determined by the strengths of the intra and …

Unraveling the emergence of quantum state designs in systems with symmetry

Quantum state designs, by enabling an efficient sampling of random quantum states, play a quintessential role in devising and benchmarking various quantum protocols with broad applications ranging from circuit designs to black hole physics. …

A quantum simulation scheme and equilibration/thermalization physics of the Sachdev-Ye-Kitaev (SYK) model

The quest for a quantum theory of gravity has led to the discovery of quantum many-body systems that are dual to gravitational models with quantum characteristics. Amongst these the Sachdev-Ye-Kitaev (SYK) model has received tremendous research …

Beyond braid statistics: Constructing a lattice model for anyons with exchange statistics intrinsic to one dimension

Anyons obeying fractional exchange statistics arise naturally in two dimensions: Hard-core two-body constraints make the configuration space of particles not simply-connected. The braid group describes how topologically-inequivalent exchange paths …

Unveiling Eigenstate Thermalization for Non-Hermitian systems

The Eigenstate Thermalization Hypothesis (ETH) has been highly influential in explaining thermodynamic behavior of closed quantum systems. As of yet, it is unclear whether and how the ETH applies to non-Hermitian systems. Here, we introduce a …

Thouless pumping in Josephson junction arrays

Recent advancements in fabrication techniques have enabled unprecedented clean interfaces and gate tunability in semiconductor-superconductor heterostructures. Inspired by these developments, we propose protocols to realize Thouless quantum pumping …

Variational quantum simulation of U(1) lattice gauge theories with qudit systems

Lattice gauge theories are fundamental to various fields, including particle physics, condensed matter, and quantum information theory. Recent progress in the control of quantum systems allows for studying Abelian lattice gauge theories in table-top …

Topological Kondo model out of equilibrium

The topological Kondo effect is a genuine manifestation of the nonlocality of Majorana modes. We investigate its out-of-equilibrium signatures in a model with a Cooper-pair box hosting four of these topological modes, each connected to a metallic …

Many-body magic via Pauli–Markov chains — from criticality to gauge theories

We introduce a method to measure many-body magic in quantum systems based on a statistical exploration of Pauli strings via Markov chains. We demonstrate that sampling such Pauli--Markov chains gives ample flexibility in terms of partitions where to …

Spin-$S$ $U(1)$ Quantum Link Models with Dynamical Matter on a Quantum Simulator

Quantum link models (QLMs) offer the realistic prospect for the practical implementation of lattice quantum electrodynamics (QED) on modern quantum simulators, and they provide a venue for exploring various nonergodic phenomena relevant to quantum …