Journal articles

This is a list of all journal articles. For other publication types, see all publications.

2025

Probing confinement in a $\mathbb{Z}_2$ lattice gauge theory on a quantum computer

Digital quantum simulators provide a table-top platform for addressing salient questions in particle and condensed-matter physics. A …

2024

Protein Design by Integrating Machine Learning and Quantum-Encoded Optimization

The protein design problem involves finding polypeptide sequences folding into a given three-dimensional structure. Its rigorous …

Unraveling the emergence of quantum state designs in systems with symmetry

Quantum state designs, by enabling an efficient sampling of random quantum states, play a quintessential role in devising and …

G-structures for black hole near-horizon geometries

We derive necessary and sufficient conditions for warped AdS2 solutions of Type II supergravity to preserve $\mathcal{N}=1$ …

Beyond braid statistics: Constructing a lattice model for anyons with exchange statistics intrinsic to one dimension

Anyons obeying fractional exchange statistics arise naturally in two dimensions: Hard-core two-body constraints make the configuration …

Thouless pumping in Josephson junction arrays

Recent advancements in fabrication techniques have enabled unprecedented clean interfaces and gate tunability in …

Simulations of the dynamics of quantum impurity problems with matrix product states

The Anderson impurity model is a paradigmatic example in the study of strongly correlated quantum systems and describes an interacting …

Variational quantum simulation of U(1) lattice gauge theories with qudit systems

Lattice gauge theories are fundamental to various fields, including particle physics, condensed matter, and quantum information theory. …

Quantum Computation of Thermal Averages for a Non-Abelian D4 Lattice Gauge Theory via Quantum Metropolis Sampling

In this paper, we show the application of the Quantum Metropolis Sampling (QMS) algorithm to a toy gauge theory with discrete …

Squeezing and quantum approximate optimization

Variational quantum algorithms offer fascinating prospects for the solution of combinatorial optimization problems using digital …

2023

Topological Kondo model out of equilibrium

The topological Kondo effect is a genuine manifestation of the nonlocality of Majorana modes. We investigate its out-of-equilibrium …

Many-body magic via Pauli–Markov chains — from criticality to gauge theories

We introduce a method to measure many-body magic in quantum systems based on a statistical exploration of Pauli strings via Markov …

Matrix models and holography: Mass deformations of long quiver theories in 5d and 3d

We enlarge the dictionary between matrix models for long linear quivers preserving eight supercharges in $d=5$ and $d=3$ and type IIB …

Eichtheorien im Quantensimulator

Gauge theories form the theoretical foundation of our understanding of many fields of science, in particular elementary particle …

The holographic map of an evaporating black hole

We construct a holographic map that takes the semi-classical state of an evaporating black hole and its Hawking radiation to a …

Quantum approximate optimization algorithm for qudit systems

A frequent starting point of quantum computation platforms is the two-state quantum system, i.e., the qubit. However, in the context of …

Universal equilibration dynamics of the Sachdev-Ye-Kitaev model

Equilibrium quantum many-body systems in the vicinity of phase transitions generically manifest universality. In contrast, limited …

Robust quantum many-body scars in lattice gauge theories

Quantum many-body scarring is a paradigm of weak ergodicity breaking arising due to the presence of special nonthermal many-body …

Massive flows in AdS$_6$/CFT$_5$

We study five-dimensional $N=1$ Superconformal Field Theories of the linear quiver type. These are deformed by a relevant operator, …

Engineering random spin models with atoms in a high-finesse cavity

All-to-all interacting, disordered quantum many-body models have a wide range of applications across disciplines, from spin glasses in …

Quantum routing of information using chiral quantum walks

We address routing of classical and quantum information over quantum network and show how to exploit chirality (directionality) to …

Dynamics of Stripe Patterns in Supersolid Spin–Orbit-Coupled Bose Gases

Despite ground-breaking observations of supersolidity in spin–orbit-coupled Bose–Einstein condensates, until now the …

Critical slowing down in sudden quench dynamics

We reveal a prethermal dynamical regime upon suddenly quenching to the vicinity of a quantum phase transition in the time evolution of …

Detecting quantum phase transitions in the quasistationary regime of Ising chains

Recently, single-site observables have been shown to be useful for probing critical slowing down in sudden quench dynamics Dağ et al., …

Absence of operator growth for average equal-time observables in charge-conserved sectors of the Sachdev-Ye-Kitaev model

Quantum scrambling plays an important role in understanding thermalization in closed quantum systems. By this effect, quantum …

Reliability of lattice gauge theories in the thermodynamic limit

Although gauge invariance is a postulate in fundamental theories of nature such as quantum electrodynamics, in quantum-simulation …

2022

Achieving the quantum field theory limit in far-from-equilibrium quantum link models

Realizations of gauge theories in setups of quantum synthetic matter open up the possibility of probing salient exotic phenomena in …

Dynamical quantum phase transitions in spin-$S$ $U(1)$ quantum link models

Dynamical quantum phase transitions (DQPTs) are a powerful concept of probing far-from-equilibrium criticality in quantum many-body …

Genuine multipartite entanglement in a one-dimensional Bose-Hubbard model with frustrated hopping

Frustration and quantum entanglement are two exotic quantum properties in quantum many-body systems. However, despite several efforts, …

Disorder-free localization with Stark gauge protection

Disorder-free localization in translation-invariant gauge theories presents a counterintuitive yet powerful framework of ergodicity …

Tuning the Topological $\theta$-Angle in Cold-Atom Quantum Simulators of Gauge Theories

The topological $\theta$-angle in gauge theories engenders a series of fundamental phenomena, including violations of charge-parity …

Towards the continuum limit of a $(1+1)$d quantum link Schwinger model

The solution of gauge theories is one of the most promising applications of quantum technologies. Here, we discuss the approach to the …

Quantum phases of dipolar bosons in multilayer optical lattice

We consider a minimal model to investigate the quantum phases of hardcore, polarized dipolar atoms confined in multilayer optical …

Entanglement Witnessing for Lattice Gauge Theories

Entanglement is assuming a central role in modern quantum many-body physics. Yet, for lattice gauge theories its certification remains …

Ground-state phase diagram of quantum link electrodynamics in $(2+1)$-d

The exploration of phase diagrams of strongly interacting gauge theories coupled to matter in lower dimensions promises the …

Stabilizing lattice gauge theories through simplified local pseudo generators

The postulate of gauge invariance in nature does not lend itself directly to implementations of lattice gauge theories in modern setups …

From non-Hermitian linear response to dynamical correlations and fluctuation–dissipation relations in quantum many-body systems

Quantum many-body systems are characterized by their correlations. While equal-time correlators and unequal-time commutators between …

Thermalization dynamics of a gauge theory on a quantum simulator

Gauge theories form the foundation of modern physics, with applications ranging from elementary particle physics and early-universe …

Enhancing disorder-free localization through dynamically emergent local symmetries

Disorder-free localization is a recently discovered phenomenon of nonergodicity that can emerge in quantum many-body systems hosting …

Projective symmetry group classification of chiral $\mathbb{Z}_2$ spin liquids on the pyrochlore lattice: application to the spin-$1/2$ XXZ Heisenberg model

We give a complete classification of fully symmetric as well as chiral $\mathbb{Z}_2$ quantum spin liquids on the pyrochlore lattice …

Gauge protection in non-Abelian lattice gauge theories

Protection of gauge invariance in experimental realizations of lattice gauge theories based on energy-penalty schemes has recently …

2021

Gauge-Symmetry Protection Using Single-Body Terms

Quantum-simulator hardware promises new insights into problems from particle and nuclear physics. A major challenge is to reproduce …

Unconventional critical exponents at dynamical quantum phase transitions in a random Ising chain

Dynamical quantum phase transitions (DQPTs) feature singular temporal behavior in transient quantum states during nonequilibrium …

Dynamical phase transitions in quantum spin models with antiferromagnetic long-range interactions

In recent years, dynamical phase transitions and out-of-equilibrium criticality have been at the forefront of ultracold gases and …

Exciting the Goldstone Modes of a Supersolid Spin–Orbit-Coupled Bose Gas

Supersolidity is deeply connected with the emergence of Goldstone modes, reflecting the spontaneous breaking of both phase and …

From entanglement certification with quench dynamics to multipartite entanglement of interacting fermions

Multipartite entanglement, such as witnessed through the quantum Fisher information (QFI), is a crucial resource for quantum …

Polymer Physics by Quantum Computing

Sampling equilibrium ensembles of dense polymer mixtures is a paradigmatically hard problem in computational physics, even in …

Local measures of dynamical quantum phase transitions

In recent years, dynamical quantum phase transitions (DQPTs) have emerged as a useful theoretical concept to characterize …

Analog cosmological reheating in an ultracold Bose gas

Cosmological reheating describes the transition of the post-inflationary universe to a hot and thermal state. In order to shed light on …

Quantum aging and dynamical universality in the long-range $O(N\to\infty)$ model

Quantum quenches to or near criticality give rise to the phenomenon of aging, manifested by glassy-like dynamics at short times and far …

Dominant Reaction Pathways by Quantum Computing

Characterizing thermally activated transitions in high-dimensional rugged energy surfaces is a very challenging task for classical …

2020

Observation of gauge invariance in a 71-site quantum simulator

The modern description of elementary particles is built on gauge theories. Such theories implement fundamental laws of physics by local …

Robustness of gauge-invariant dynamics against defects in ultracold-atom gauge theories

Recent years have seen strong progress in quantum simulation of gauge-theory dynamics using ultracold-atom experiments. A principal …

Reliability of lattice gauge theories

Currently, there are intense experimental efforts to realize lattice gauge theories in quantum simulators. Except for specific models, …

Hybrid infinite time-evolving block decimation algorithm for long-range multi-dimensional quantum many-body systems

In recent years, the infinite time-evolution block decimation (iTEBD) method has been demonstrated to be one of the most efficient and …

Out-of-equilibrium phase diagram of long-range superconductors

Within the ultimate goal of classifying universality in quantum many-body dynamics, understanding the relation between …

Perspectives of quantum annealing: Methods and implementations

Quantum annealing is a computing paradigm that has the ambitious goal of efficiently solving large-scale combinatorial optimization …

A scalable realization of local U(1) gauge invariance in cold atomic mixtures

In the fundamental laws of physics, gauge fields mediate the interaction between charged particles. An example is quantum …

2019

Quantum localization bounds Trotter errors in digital quantum simulation

A fundamental challenge in digital quantum simulation (DQS) is the control of an inherent error, which appears when discretizing the …

2018

Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences

Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of …

2016

Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated …

Many-body localization in a quantum simulator with programmable random disorder

When a system thermalizes it loses all memory of its initialconditions. Even within a closed quantum system, subsystemsusually …

Measuring multipartite entanglement through dynamic susceptibilities

Entanglement is considered an essential resource in quantum technologies, and central to the understanding of quantum many-body …

2015

A quantum annealing architecture with all-to-all connectivity from local interactions

Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic …

Spectroscopy of Interacting Quasiparticles in Trapped Ions

The static and dynamic properties of many-body quantum systems are often well described by collective excitations, known as …

Probing entanglement in adiabatic quantum optimization with trapped ions

Adiabatic quantum optimization has been proposed as a route to solve NP-complete problems, with a possible quantum speedup compared to …

2014

Tomography of Band Insulators from Quench Dynamics

We propose a simple scheme for tomography of band-insulating states in one- and two-dimensional optical lattices with two sublattice …

Quasiparticle engineering and entanglement propagation in a quantum many-body system

The key to explaining and controlling a range of quantum phenom-ena is to study how information propagates around many-body sys-tems. …

2012

Can one trust quantum simulators?

Various fundamental phenomena of strongly correlated quantum systems such as high-$T_c$ superconductivity, the fractional quantum-Hall …