Quantum simulation

Suppressing nonperturbative gauge errors in the thermodynamic limit using local pseudogenerators

With recent progress in quantum simulations of lattice-gauge theories, it is becoming a pressing question how to reliably protect the gauge symmetry that defines such models. In a recent work [J. C. Halimeh *et al.*, …

Universal dynamics of Sachdev-Ye-Kitaev model

The Sachdev-Ye-Kitaev (SYK) model was introduced in the context of explaining the properties of “strange metals,” and has been found to manifest the characteristics of a quantum theory which is holographically dual to extremal charged black holes …

Stabilizing lattice gauge theories through simplified local pseudo generators

The postulate of gauge invariance in nature does not lend itself directly to implementations of lattice gauge theories in modern setups of quantum synthetic matter. Unavoidable gauge-breaking errors in such devices require gauge invariance to be …

Engineering a $\mathrm{U}(1)$ lattice gauge theory in classical electric circuits

Lattice gauge theories are fundamental to such distinct fields as particle physics, condensed matter, and quantum information science. Their local symmetries enforce the charge conservation observed in the laws of physics. Impressive experimental …

Thermalization dynamics of a gauge theory on a quantum simulator

Gauge theories form the foundation of modern physics, with applications ranging from elementary particle physics and early-universe cosmology to condensed matter systems. We perform quantum simulations of the unitary dynamics of a $U(1)$ symmetric …

Non-invasive measurement of currents in analog quantum simulators

Despite the pristine abilities of analog quantum simulators to study quantum dynamics, possibilities to detect currents are sparse. Here, we propose a flexible non-invasive technique to measure currents in quantum many-body systems by weakly coupling …

Gauge protection in non-Abelian lattice gauge theories

Protection of gauge invariance in experimental realizations of lattice gauge theories based on energy-penalty schemes has recently stimulated impressive efforts both theoretically and in setups of quantum synthetic matter. A major challenge is the …

Quantum Simulating Lattice Gauge Theories — High-Energy Physics at Ultra-Cold Temperatures

Gauge theories are at the heart of our modern understanding of physics, but solving their out-of-equilibrium dynamics is extremely challenging for classical computers. This difficulty is currently spurring a worldwide effort to solve gauge theories …

Staircase Prethermalization and Constrained Dynamics in Lattice Gauge Theories

The dynamics of lattice gauge theories is characterized by an abundance of local symmetry constraints. Although errors that break gauge symmetry appear naturally in NISQ-era quantum simulators, their influence on the gauge-theory dynamics is …

Reliability of lattice gauge theories in the thermodynamic limit

Although gauge invariance is a postulate in fundamental theories of nature such as quantum electrodynamics, in quantum-simulation implementations of gauge theories it is compromised by experimental imperfections. In a recent work [Halimeh and Hauke, …