The continuous improvement of fabrication techniques and high-quality semiconductor-superconductor interfaces allowed for unprecedented tunability of Josephson junction arrays (JJA), making them a promising candidate for analog quantum simulations of many-body phenomena. While most experimental proposals so far focused on quantum simulations of ensembles of two-level systems, the possibility of tuning the current-phase relation beyond the sinusoidal regime paves the way for studying statistical physics models with larger local Hilbert spaces. Here, we investigate a particular JJA architecture that can be mapped into a Z3 clock model. Through matrix-product-states simulations and bosonization analysis, we show that few experimentally accessible control parameters allow for the exploration of the rich phase diagrams of the associated low-energy field theories. Our results expand the horizon for analog quantum simulations with JJAs towards models that can not be efficiently captured with qubit architectures.