Topological Kondo model out of equilibrium

Abstract

The topological Kondo effect is a genuine manifestation of the nonlocality of Majorana modes. We investigate its out-of-equilibrium signatures in a model with a Cooper-pair box hosting four of these topological modes, each connected to a metallic lead. Through an advanced matrix-product-state approach tailored to study the dynamics of superconductors, we simulate the relaxation of the Majorana magnetization, which allows us to determine the related Kondo temperature, and we analyze the onset of electric transport after a quantum quench of a lead voltage. Our results apply to Majorana Cooper-pair boxes fabricated in double nanowire devices and provide nonperturbative evidence of the crossover from weak-coupling states to the strongly correlated topological Kondo regime. The latter dominates at the superconductor charge degeneracy points and displays the expected universal fractional zero-bias conductance.

Publication
Phys. Rev. B 108, L220302
Published 18 December 2023

Related